

 Connect

explained

What is

OpenID Connect?

OpenID Connect is
an internet standard for

Single
Sign-On

(SSO)

Identity
Provision

(IdP)

OpenID Connect supports

web
clients

mobile / native
clients

1. Need to authenticate a user?

2. Send user to their OpenID provider
 (via browser / HTTP 302 redirect)

3. Retrieve identity token

The OpenID Connect
protocol distilled

The key OpenID Connect object

A client application receives an ID token from the OpenID Provider

ID Token

asserts the user's identity
(user ID)

The ID token

The ID token resembles the
concept of an identity card,
in a standard digital format
that clients can verify

● Asserts the user's identity.

● Has an issuing authority (the IdP).

● May specify how (strength, factors)
and when the user was authenticated.

● Is generated for a particular audience
(client).

● Has an issue and an expiration date.

● May contain details such as the user's
name, email address and other profile
information.

● Is digitally signed, so the intended
recipients can verify it.

● May optionally be encrypted for
confidentiality.

The ID token internals

● Encoded as a JSON Web
Token (JWT).

● The claims about the
authenticated end-user
(subject) are packaged in a
simple JSON object.

● Digitally signed with the
OpenID Provider's RSA or
EC key.

● URL-safe.

{

 "iss" : "https://c2id.com",

 "sub" : "alice",

 "aud" : "s6BhdRkqt3",

 "nonce" : "n-0S6_WzA2Mj",

 "exp" : 1311281970,

 "iat" : 1311280970,

 "acr" : "https://loa.c2id.com/high",

 "amr" : ["mfa", "pwd", "otp"]

}

Encoded ID token

eyJhbGciOiJSUzI1NiIsImtpZCI6IjFlOWdkazcifQ.ewogImlzcyI6ICJodHRw

Oi8vc2VydmVyLmV4YW1wbGUuY29tIiwKICJzdWIiOiAiMjQ4Mjg5NzYxMDAxIiw

KICJhdWQiOiAiczZCaGRSa3F0MyIsCiAibm9uY2UiOiAibi0wUzZfV3pBMk1qIi

wKICJleHAiOiAxMzExMjgxOTcwLAogImlhdCI6IDEzMTEyODA5NzAKfQ.ggW8hZ

1EuVLuxNuuIJKX_V8a_OMXzR0EHR9R6jgdqrOOF4daGU96Sr_P6qJp6IcmD3HP9

9Obi1PRs-cwh3LO-p146waJ8IhehcwL7F09JdijmBqkvPeB2T9CJNqeGpegccMg

4vfKjkM8FcGvnzZUN4_KSP0aAp1tOJ1zZwgjxqGByKHiOtX7TpdQyHE5lcMiKPX

fEIQILVq0pc_E2DzL7emopWoaoZTF_m0_N0YzFC6g6EJbOEoRoSK5hoDalrcvRY

LSrQAZZKflyuVCyixEoV9GfNQC3_osjzw2PAithfubEEBLuVVk4XUVrWOLrLl0n

x7RkKU8NXNHq-rvKMzqg

[Header] . [Claims] . [Digital Signature]

Via the OAuth 2.0

protocol flows

How to obtain an ID token?

Choose an OAuth 2.0 flow to suit
your app

● Authorisation code flow (recommended)

– for typical web and mobile apps

– allows authentication of the client

– tokens retrieved via back channel

● Implicit flow

– for JavaScript applications that run in the browser

– the client is not authenticated

– tokens returned via front-channel, revealed to browser

● Hybrid flow

– allows app front-end and back-end to receive tokens independently

– rarely used

http://openid.net/specs/openid-connect-core-1_0.html#Authentication

http://openid.net/specs/openid-connect-core-1_0.html#Authentication

The OpenID auth request
(code flow)

Send the user to the OpenID provider with an
authentication request:

https://openid.provider.com/authorize?
 response_type=code
 &scope=openid
 &client_id=s6BhdRkqt3
 &state=af0ifjsldkj
 &redirect_uri=https%3A%2 %2Fclient.example.org%2Fcb

The OpenID auth response
(code flow)

If the user is successfully authenticated the OpenID
provider will redirect the browser back to the client with
an authorisation code:

https://client.example.org/cb?
 code=SplxlOBeZQQYbYS6WxSbIA
 &state=af0ifjsldkj

The OpenID auth response
(code flow)

If the authentication request cannot be fulfilled for some
reason the OpenID provider may return an error code:

https://client.example.org/cb?
 error=access_denied
 &state=af0ifjsldkj

Exchange code for ID token
(code flow)

Makes a back channel request to exchange the code for
an ID token. The client authenticates itself to the server.

POST /token HTTP/1.1
Host: openid.provider.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

grant_type=authorization_code
 &code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

Exchange code for ID token
(code flow)

Finally, we have our ID token! But what's the access
token for?

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

{
 "access_token": "SlAV32hkKG",
 "token_type": "Bearer",
 "refresh_token": "8xLOxBtZp8",
 "expires_in": 3600,
 "id_token": "eyJhbGciOiJSUzI1NiIsImtpZCI6IjFlOWdkazc..."
}

UserInfo

{
 "sub" : "alice",
 "name" : "Alice Adams",
 "given_name" : "Alice",
 "family_name" : "Adams",
 "email" : "alice@wonderland.net",
 "email_verified" : true,
 "phone_number" : "+359 (99) 88200305",
 "profile" : "https://c2id.com/users/alice",
 "ldap_groups" : ["audit", "admin"]
 }

OpenID Connect defines an extensible JSON schema for releasing

consented user details to client applications

mailto:alice@wonderland.net

Requesting UserInfo with the
OpenID auth request

Send user to OpenID provider with auth request:

https://openid.provider.com/authorize?
 response_type=code
 &scope=openid%20profile%20email
 &client_id=s6BhdRkqt3
 &state=af0ifjsldkj
 &redirect_uri=https%3A%2 %2Fclient.example.org%2Fcb

The access token

Resembles the concept of a
physical token or ticket. Permits
bearer access to a resource or
service. Has an expiration and
other attributes associated with it.

● OAuth 2.0 access tokens are
employed in OpenID Connect
to allow the client application to
retrieve consented user details
from a UserInfo endpoint.

● The server may extend the
access token scope to allow
the client access to other
attributes and resources.

● The client treats the access
token as a simple opaque
string to be passed with the
HTTP request to the protected
resource.

UserInfo request with access
token

Put the obtained bearer token in the authorization
header of your outgoing HTTPS request:

GET /userinfo HTTP/1.1
Host: server.example.com
Authorization: Bearer SlAV32hkKG

UserInfo response

Sample response from the UserInfo endpoint, with the
consented details (claims / assertions) about the user:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "sub" : "alice",
 "name" : "Alice Adams",
 "email" : "alice@wonderland.net",
 "email_verified" : true,
 "phone_number" : "+359 (99) 100200305",
 "https://c2id.com/groups" : ["audit", "admin"]
}

mailto:alice@wonderland.net

The two OpenID Connect tokens
summed up

ID Token

asserts the user's identity
(user ID)

Access Token

optional, to retrieve
consented UserInfo

OpenID Connect rides on top of
OAuth 2.0

● User identity is asserted by means of
JSON Web Tokens (JWT)

● Clients use standard OAuth 2.0 flows
to obtain ID tokens

● Guiding mantra: Simple clients,
complexity absorbed by the server

● Any method for authenticating users –
password, FIDO, 3rd party, etc.

● JSON schema for UserInfo

● Supports optional OpenID provider
discovery, dynamic client registration
and session management.

● Extensible to suit many use cases.

● Federation is possible.

OpenID Connect

OAuth 2.0
JOSE

+
JWT

OpenID Connect provider
endpoints

● Core provider endpoints:

– Authorisation endpoint

– Token endpoint

– UserInfo endpoint

● Optional provider endpoints:

– WebFinger endpoint

– Provider metadata URI

– Provider JWK set URI

– Client registration endpoint

– Session management endpoint

– End session endpoint

HTTP Endpoints

Optional endpoints

● WebFinger : Enables dynamic discovery of the OpenID Connect provider
for a user based on their email address.

● Provider configuration URI : Well-known URL of a JSON document
advertising the endpoints and capabilities of the OpenID provider. Helps
clients configure their OpenID Connect requests.

● Provider JWK set URI : JSON document containing the OpenID provider's
public (typically RSA) keys in JSON Web Key (JWK) format. These keys
are used to sign the issued ID tokens and other artefacts.

● Client registration : Enables client apps to register dynamically, then
update their details or deregister. Registration may be open (public).

● Session management : Enables client apps to check if a logged in user
has an active session with the OpenID provider. Also to signal logout.

● End session : Enables clients to ask the OpenID provider to log out a user.

The future: dynamic discovery +
client registration

alice@wonderland.net

ID token for Alice

The specifications

● OpenID Connect: http://openid.net/connect

● OAuth 2.0 (RFC 6749): http://tools.ietf.org/html/rfc6749

● OAuth 2.0 Bearer token (RFC 6750): http://tools.ietf.org/html/rfc6750

● JSON Web Token: http://tools.ietf.org/html/rfc7519

● JSON Web Signature: http://tools.ietf.org/html/rfc7515

● JSON Web Encryption: http://tools.ietf.org/html/rfc7516

● JSON Web Key: http://tools.ietf.org/html/rfc7517

http://openid.net/connect
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6750
http://tools.ietf.org/html/rfc7519
http://tools.ietf.org/html/rfc7515
http://tools.ietf.org/html/rfc7516
http://tools.ietf.org/html/rfc7517

Thank You!

Q + A

Get these slides from

https://connect2id.com/assets/oidc-explained.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 33
	Slide 34
	Slide 35
	Slide 36

